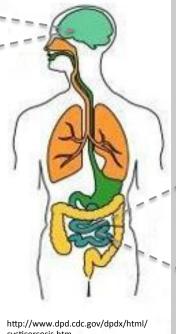
Taenia solium Transmission Dynamics and the Burden of Neurocysticercosis

Institute of Tropical Medicine of Antwerp
Nicolas Praet

April 16th 2012

Presentation Plan

- Introduction
- The burden of NCC
- Why is it important to study the transmission dynamics of *Taenia solium*?


Introduction

- Life cycle
- Distribution and risk factors
- The diagnosis of cysticercosis in pigs and humans

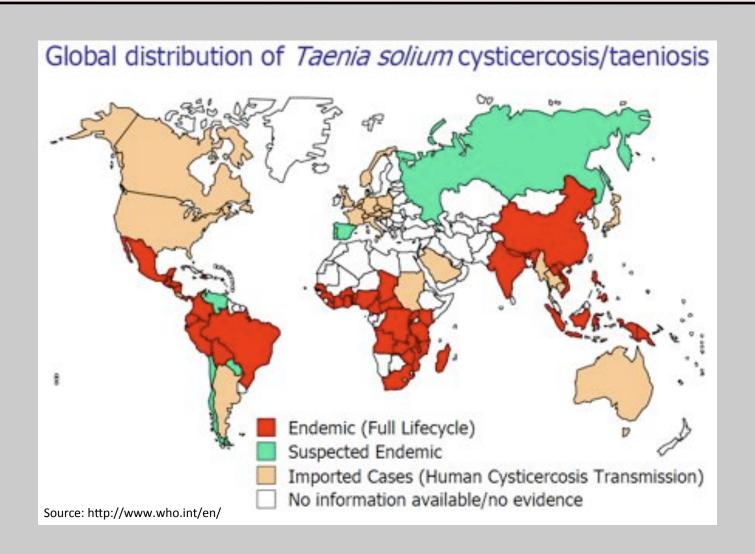
Human cysticercosis

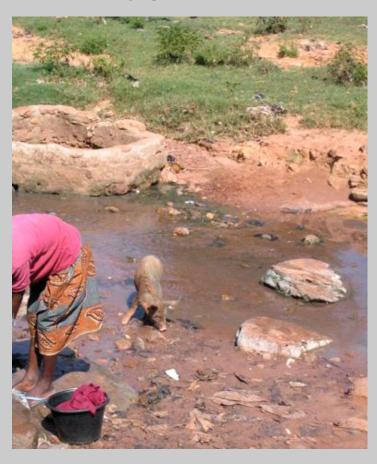
cysts in raw or undercooked infected meat consumed by humans

cysticercosis.htm

eggs accidentally consumed by humans

Taeniosis


Life Cycle


Porcine cysticercosis

eggs in human faeces consumed by pigs

Human to pig transmission: free-roaming pigs

Human to pig transmission: no sanitations, open-air defecation

<u>Pig to human transmission</u>: raw undercooked or pork, culinary habits

<u>Human to human transmission</u>: direct contact or food or water contaminated with eggs

How to diagnose cysticercosis?

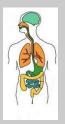
R Looking for the parasite in pigs R

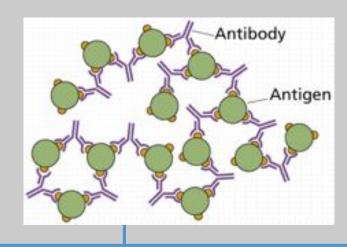


TONGUE INSPECTION

CARCASS INSPECTION

Looking for the parasite in humans


INFECTION


IMAGING

SUB-CUTANEOUS NODULES

Looking for antibodies raised against *T. solium* or circulating antigens of the parasite in porcine and human serum

ANTIBODY DETECTION

ELISA (Enzyme-linked immunosorbent assay)

EITB (Enzyme-linked immunoelectrotransfer blot assay)

ANTIGEN DETECTION

SANDWICH ELISA

EXPOSURE

INFECTION

The disease burden of NCC

The burden of a disease

Why is it important to estimate the burden of a disease?

1. Setting priorities for public health research, policy and services

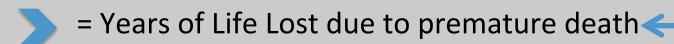
- Comparing the cost-effectiveness of disease control programmes
- 3. Comparing the importance of a disease between countries/regions of the world

How to estimate the burden of a disease?

Monetary burden

Direct costs: medical doctor, diagnostic tests and treatments

Indirect costs: incapacity to go to work or to get a job



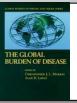
Animal production: carcass condemnation at slaughterhouse and meat price decrease

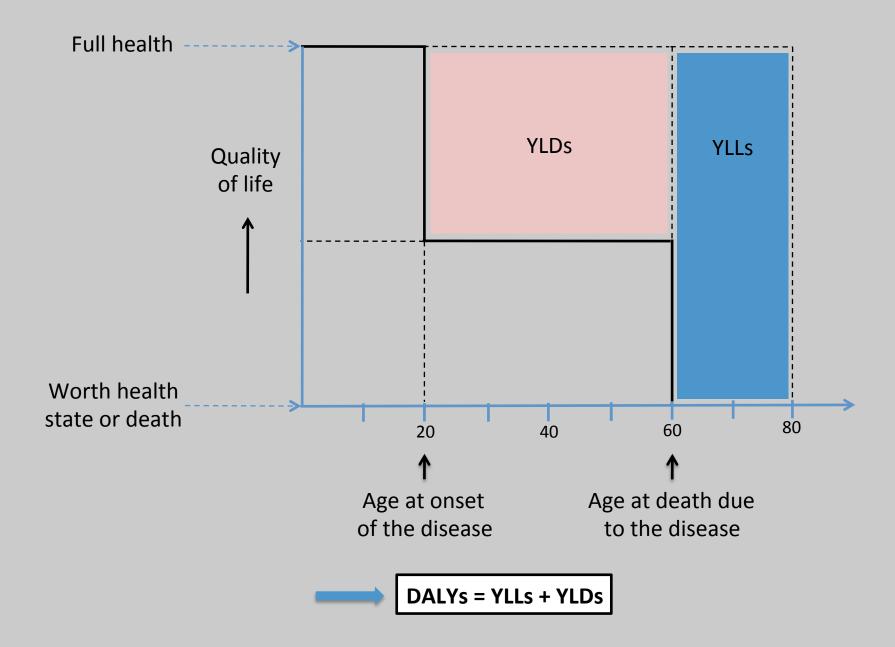
Health Burden: Disability Adjusted Life Year (DALY)

DALYs = number of years of full health lost due to the disease

= YLLs

= Years of Life lived with Disability


= YLDs


DALYs = YLLs + YLDs

Approach used by the World Health Organization to estimate the Global Burden of Diseases

Τn

3 comprehensive studies available

Tropical Medicine and International Health

doi:10.1111/j.1365-3156.2006.01627.x

VOLUME II NO 6 PP 906-916 JUNE 2006

Estimation of the cost of *Taenia solium* cysticercosis in Eastern Cape Province, South Africa

H. Carabin¹, R. C. Krecek^{2,3}, L. D. Cowan¹, L. Michael³, H. Foyaca-Sibat⁴, T. Nash⁵ and A. L. Willingham^{6,7}

- 1 Department of Biostatistics and Epidemiology, College of Public Health, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
- 2 Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
- 3 University of Johannesburg, Department of Zoology, Auckland Park, South Africa
- 4 Walter Sisulu University Faculty of Health Sciences, Mthathaa, Eastern Cape, South Africa
- 5 Gastrointestinal Parasites Section Laboratory of Parasitic Diseases, National Institute of Allergic and Infectious Diseases, Bethesda, MD, USA
- 6 International Cysticercosis Coordination Center, Royal Veterinary & Agricultural University, Frederiksberg, Denmark
- 7 People, Livestock and the Environment Thematic Programme, International Livestock Research Institute, Nairobi, Kenya

3 comprehensive studies available

OPEN ACCESS Freely available online

The Disease Burden of *Taenia solium* Cysticercosis in Cameroon

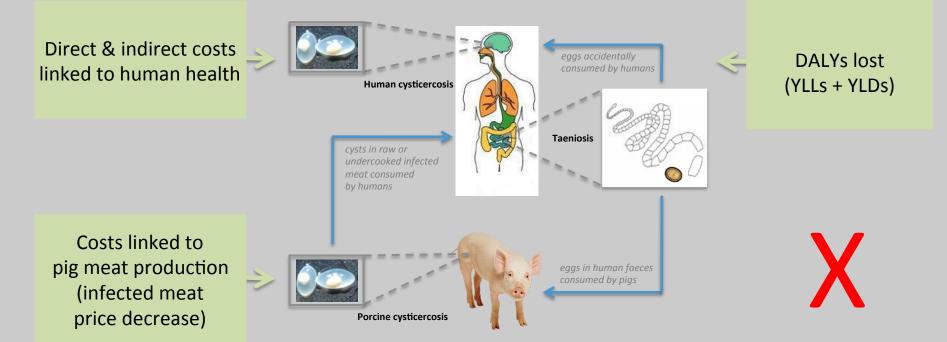
Nicolas Praet¹*, Niko Speybroeck^{1,2}, Rafael Manzanedo¹, Dirk Berkvens¹, Denis Nsame Nforninwe³, André Zoli⁴, Fabrice Quet⁵, Pierre-Marie Preux⁵, Hélène Carabin⁶, Stanny Geerts¹

1 Institute of Tropical Medicine, Antwerp, Belgium, 2 Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium, 3 Batibo District Hospital, Batibo, Cameroon, 4 University of Dschang, Dschang, Cameroon, 5 Institute of Neuroepidemiology and Tropical Neurology, Limoges, France, 6 College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America

3 comprehensive studies available

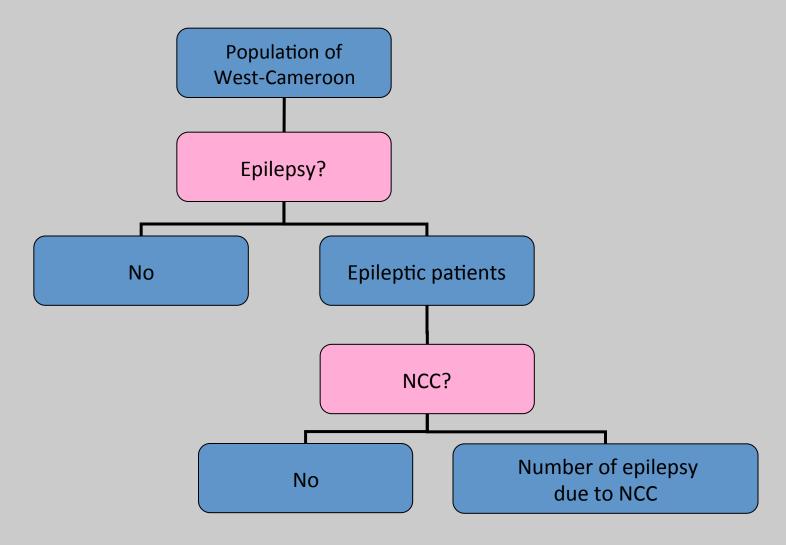
OPEN ACCESS Freely available online

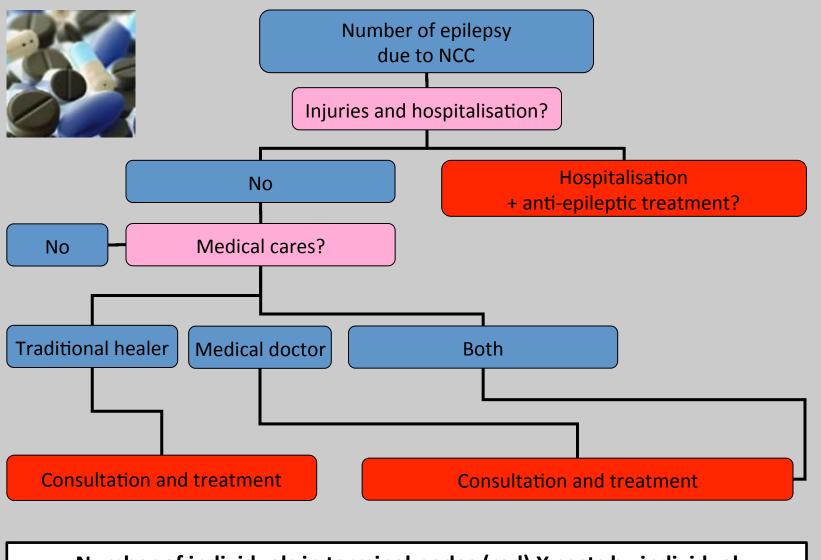
Estimating the Non-Monetary Burden of Neurocysticercosis in Mexico

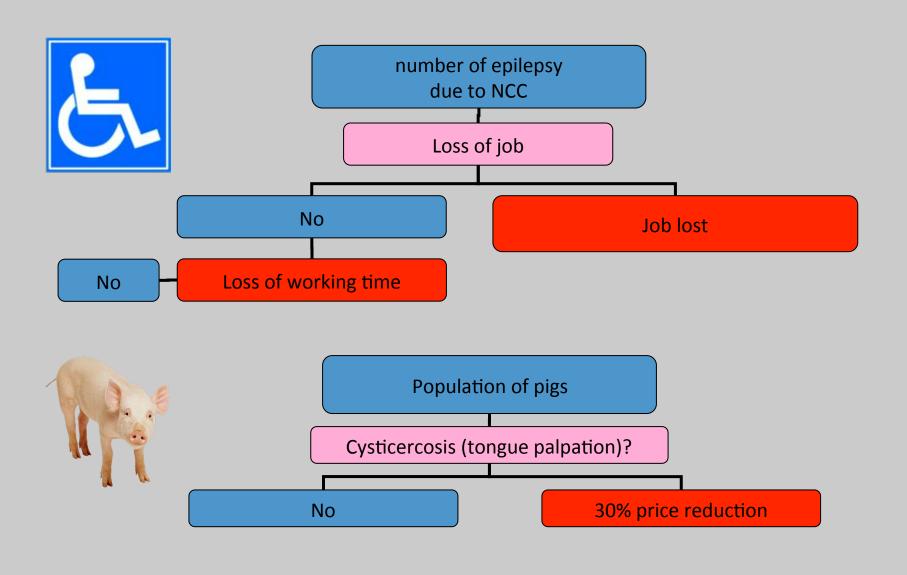

Rachana Bhattarai¹, Christine M. Budke¹*, Hélène Carabin², Jefferson V. Proaño³, Jose Flores-Rivera⁴, Teresa Corona⁴, Renata Ivanek¹, Karen F. Snowden⁵, Ana Flisser⁶

1 Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America, 2 Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America, 3 Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México Distrito Federal, Mexico, 4 Clinical Laboratory of Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery, México Distrito Federal, Mexico, 5 Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America, 6 Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México Distrito Federal, Mexico

Burden estimation components


Monetary burden assessment


Health burden assessment


Decision tree

Number of individuals in terminal nodes (red) X costs by individual

Number of individuals in terminal nodes (red) X costs by individual

Retrospective study

Collection of existing data to estimate

- 1. how many individuals are suffering from NCC
 - 2. How many pigs are infected with *T. solium*

Searching for the necessary information:

- 1. National and international health statistics
 - 2. Scientific publications
 - 3. Expert opinion

Consider the uncertainty around this information by using probability distributions for almost each of above-mentioned parameters

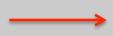
Monetary burden comparison

More cases in Cameroon but lower monetary burden: mainly due to difference in indirect costs (lower salary)

8. Comparison of the monetary burden of *T. solium* rcosis in West Cameroon and Eastern Cape Province South Africa.

ary) e	West Cameroon (This study)	ECP, South Africa [3]
Population	5,065,382	7,088,000
 No. (%) of NCC-associated cases of epilepsy 	50,326* (1.0)	34,662 (0.5)
• Overall monetary burden (×10 ⁶ Euro)	10.3	15.0–27.5°
○ % due to human cysticercosis	95.3	73.1–85.4
○ % due to porcine cysticercosis	4.7	14.6–26.9
Monetary burden per capita (Euro)	2.0	2.1–3.9

^{*}based on a prevalence of epilepsy of 3.6%.


doi:10.1371/journal.pntd.0000406.t008

different calculation methods were used (based on 2004 exchange rate of 1US\$ = 0.805 Euro).

DALY studies comparison

Cameroon	Mexico	
9 DALYs lost per 1,000 person-years*	0.25 DALYs lost per 1,000 person-years*	

^{*}years of life in perfect health yearly lost per 1000 inhabitants of the area

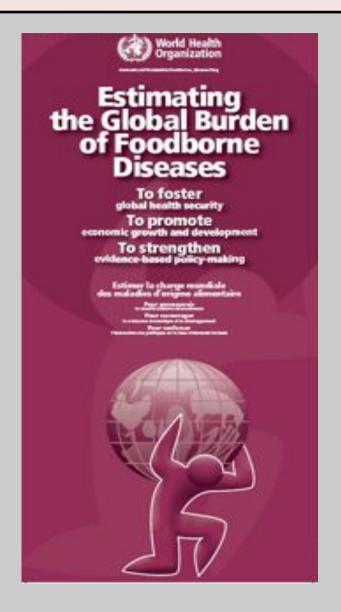
Higher health burden in Cameroon mainly due to higher mortality rate

Conclusions

 Burden of human and porcine CC may be non negligible and deserves a more global assessment

2. Identification and description of disease data gaps (epidemiological and clinical)

Conclusions

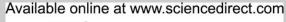

3. Comparison Monetary and Health burden approaches

	Monetary Burden	Health (DALY) Burden
Indicator	monetary costs related to	years lost due to morbidity AND
	morbidity	mortality
Zoonotic infections	cost of animal production losses	cost of animal production losses can
	may be included	NOT be included
Social impact	not taken into account	not taken into account
Economic impact	taken into account	not taken into account
Comparison between world regions	depends on time- and region- specific economical factors (difficulties in comparing poor and rich countries)	possible throughout the whole world
Interpretation for decision- makers	accessible	needs a certain background
Identification of decision-	sometimes difficult to identify	only mortality rate and incidence of
tree end component	for each cost	each symptom to be identified
Disability weighting	not necessary	disability weights rather subjective and not context specific

Perspectives: towards the assessment of the Global Burden of NCC

GBD of NCC considered by WHO in the framework of the Foodborne Disease Burden Epidemiology Group (FERG) initiative:

- Systematic review conducted
- % of NCC-associated epilepsy available: 29%
- DALY calculations on going (estimates expected in 2013)


Why is it important to study the transmission dynamics of *T. solium*?

- Accurate burden estimates/filling data gaps on:
 - Age-related prevalence/incidence/mortality estimates (pigs and human)
 - Disease duration

Cost-effective intervention programmes

Why is it important to study the transmission dynamics of *T. solium*?

International Journal for Parasitology xxx (2007) xxx-xxx

www.elsevier.com/locate/ijpara

Simulating transmission and control of *Taenia solium* infections using a Reed-Frost stochastic model

Niels C. Kyvsgaard a,c,*, Maria Vang Johansen b,c, Hélène Carabin d

^a Department of Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark

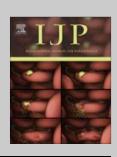
^b DBL-Institute for Health Research and Development, Charlottenlund, Denmark

^c WHO/FAO Collaborating Centre for Emerging and Other Parasitic Zoonoses, Danish Centre for Experimental Parasitology,
Department of Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C, Denmark

^d Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, OK, USA

Received 18 September 2006; received in revised form 24 November 2006; accepted 28 November 2006

Study of the effect of age on the proportion of infected and exposed individuals


International Journal for Parasitology 40 (2010) 85-90

Contents lists available at ScienceDirect

International Journal for Parasitology

Age-related infection and transmission patterns of human cysticercosis

N. Praet a,e,*, N. Speybroeck a,b, R. Rodriguez-Hidalgo C, W. Benitez-Ortiz C, D. Berkvens a,d, J. Brandt a, C. Saegerman P, P. Dorny Dorn

^a Institute of Tropical Medicine, Animal Health Department, Antwerp, Belgium

^b Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium

^c Centro Internacional de Zoonosis, Quito, Ecuador

^d Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium

e Department of Infectious and Parasitic Diseases, Epidemiology and Risk Analysis Applied to Veterinary Sciences, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium

Modelling as a tool

- Available data and expert opinion on the transmission dynamics and control of *T. solium* need to be objectively synthesize in order to be objectively interpreted
- Large scale and multifactorial studies are expensive and difficult to implement

Modelling allows to use available information to estimate the prevalence/incidence and effect of control strategies on an objective manner and in different settings

Modelling may include several techniques suc as:

- Bayesian approach
- Rule-based modelling
- Expert elicitation
- Stochastic approach (uncertainty)

Conclusions

1. Burden of human and porcine CC may be non negligible and deserves a more global assessment

- Identification and description of disease data gaps (epidemiological and clinical)
- 3. Transmission dynamics studies are essential to assess the burden of *T. solium*

Perspectives

Assessment of the global burden of cysticercosis

How to obtain these estimates when only fragmentary data are available?

2 approaches

Prospective approach

- more accurate diagnostic tools
- standardise data collection

Longitudinal age-related immunoepidemiological and clinical data to estimate:

- the incidence of the disease
- the proportion of CC-associate symptoms

Retrospective approach

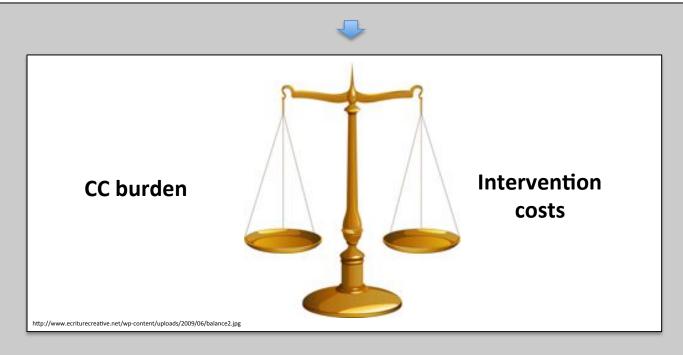
- using existing data in innovative ways

Systematic literature reviews

Meta-analyses

Simulation models

Bayesian modeling


Expert elicitation

Stochastic models

Burden estimates

Cost-effectiveness of prevention and control programs can be tested and help national and international policy- and decision- makers in setting priorities in public health and veterinary public health policies, services and research

